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Outline

• Energy minimization in computer vision and computational

biology.

• Linear Programming relaxations.

• BP and LP - closer than we thought.

• Fixing partially fractional solutions.

• Experimental results.



Pairwise energy minimization

E(x) =
∑

<ij>

Eij(xi, xj) +
∑

i

Ei(xi)

• Stereo vision.

• Side-Chain Prediction.

• Protein Design.



Stereo Vision

Left Right

Disparity (Tsukuba University)



Stereo problem as discrete optimization

x is disparity image. E(xi, xj) is compatability cost and E(xi) is

local data cost.

x∗ = argmin
x

∑

i,j

Eij(xi, xj) +
∑

i

Ei(xi)

Old formulation (Marr and Poggio 82) but how do we optimize?



Protein Folding

Gene sequence ⇒ Amino-acid sequence ⇒ 3D structure.



Protein folding in two stages

• Backbone

• Side Chains



Backbone



Backbone plus sidechains



Side chain prediction as combinatorial
optimization

• Search space: position of each side chain defined by 4 angles.

Each angle is one of 3 possibilities. Search space is 81n.

• Cost function: local energy and pairwise energies.

Goal: find set of angles such that energy is minimal.



Graphical models

Variables = nodes, edges = pairwise energy term



MAP in graphical models

x∗ = argmin
x

∑

i,j

Eij(xi, xj) +
∑

i

Ei(xi)

NP Hard for protein folding and stereo vision ⇒ many

approximate algorithms.



What’s wrong with approximations ?

Best approximate minimizers:

• Stereo vision - unsatisfactory results.

• Side chain prediction - approx. 85%

Better minimizer or better energy functions ?



Linear Programming relaxations

J(x) =
∑

i,j

Eij(xi, xj) +
∑

i

Ei(xi)

qi(xi), qij(xi, xj) are indicator variables.

J({q}) =
∑

i,j

∑

xi,xj

qij(xi, xj)Eij(xi, xj) +
∑

i

∑

xi

qi(xi)Ei(xi)



Integer Programming formulation

minimize:

J({q}) =
∑

i,j

∑

xi,xj

qij(xi, xj)Eij(xi, xj) +
∑

i

∑

xi

qi(xi)Ei(xi)

subject to:

qij(xi, xj) ∈ {0,1}
∑

xi,xj

qij(xi, xj) = 1

∑

xi

qij(xi, xj) = qj(xj)



Linear Programming relaxation

minimize:

J({q}) =
∑

i,j

∑

xi,xj

qij(xi, xj)Eij(xi, xj) +
∑

i

∑

xi

qi(xi)Ei(xi)

subject to:

qij(xi, xj) ∈ [0,1]
∑

xi,xj

qij(xi, xj) = 1

∑

xi

qij(xi, xj) = qj(xj)



Guarantee of optimality

If the LP solution is integer (qij(xi, xj) ∈ {0,1} for all i, j) then

we have found the global minimum of J.



LP relaxations for vision?

State of the art LP solver can be applied to 39×39 subimage in

a machine with 4G memory (34× 34 with 2G).
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LP using BP

Surprising connection between variants of BP and LP for certain

problems (Wainwright, Jaakkola and Willsky 03, Vontobel and

Koetter 06, Jung and Shah 07)



Our result

For a large family of BP max-product algorithms (including or-

dinary BP) and for any graphical model, there exists a BP fixed

point such that BP decoding equals the LP decoding.

xBP = (0,1, ?,0,1, ?)

xLP = (0,1, ?,0,1, ?)



Family of max-product algorithms

m0
αi(xi) = max

xα\i
f(α)(xα)

∏

j 6=i

mjα(xj)

m0
i,α(xi) =

∏

β 6=α

mβi(xi)

mαi(xi) ←
(

m0
αi(xi)

)γi
(

m0
i,α(xi)

)γi−1

mi,α(xi) ←
(

m0
i,α(xi)

)γi
(

m0
αi(xi)

)γi−1

γi = 1⇒ ordinary BP.



Proof outline

• Easy part - zero temperature sum product.

• Hard part - max product.



Easy part

Fixed points of BP correspond to stationary points of the Bethe-

Kikuchi free energy (Yedidia, Freeman, Weiss 01, Kabashima

Saad 98).

F =
∑

i,j

∑

xi,xj

bij(xi, xj)Eij(xi, xj) +
∑

i

∑

xi

bi(xi)Ei(xi)

+T





∑

i,j

∑

xi,xj

bij(xi, xj) ln bij(xi, xj)−
∑

i

ci

∑

xi

bi(xi) ln bi(xi)







BP and LP

minimize:

Fβ =
∑

i,j

∑

xi,xj

bij(xi, xj)Eij(xi, xj) +
∑

i

∑

xi

bi(xi)Ei(xi)

+T





∑

i,j

∑

xi,xj

bij(xi, xj) ln bij(xi, xj)−
∑

i

ci

∑

xi

bi(xi) ln bi(xi)





subject to:

bij(xi, xj) ∈ [0,1]
∑

xi,xj

bij(xi, xj) = 1

∑

xi

bij(xi, xj) = bj(xj)



Visualizing BP and LP

Fβ =
∑

i,j

∑

xi,xj

bij(xi, xj)Eij(xi, xj) +
∑

i

∑

xi

bi(xi)Ei(xi)

+T





∑

i,j

∑

xi,xj

bij(xi, xj) ln bij(xi, xj)−
∑

i

(di − 1)
∑

xi

bi(xi) ln bi(xi)





bij(xi, xj) =

(

a b
b 1− (a + 2b)

)



Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Visualizing BP and LP
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Hard part:

• Intuition - zero temperature sum product = max-product.

• This is wrong (Kolmogorov 03). But zero temperature sum

product decoding = max-product decoding.



Theoretical implications:

If BP fixed point unique then BP decoding=LP decoding.

• No ties ⇒ BP decoding=LP decoding=MAP decoding.

• Integrality gap ⇒ BP decoding=LP decoding 6= MAP de-

coding.



When is BP fixed point unique?

• Ordinary BP on trees and single cycles.

• Entropy is convex combination of tree entropies (Wainwright

et al. 03)

• Entropy is convex (Meltzer et al.05)

• Generalized Dobrushin conditions (Tatikonda and Jordan 02,

Heskes 05, Weitz 06)



Practical implications

If you have BP code, add two lines and you have LP code.

• convergence?

• convergence rate ?



Comparisons

Compare run-times of:

• Generic BP code.

• CPLEX 9.0. Perhaps the most powerful commercial LP

solver.



Comparisons - stereo

50 100 150 200
10

0

10
5

Grid size

#Variables

#Constraints

Tomlab

BP can solve full sized images.



Run times - stereo
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Global Optimum

xBP = (0,1, ?,0,1, ?)

xLP = (0,1, ?,0,1, ?)

In any reasonably difficlt problem the LP/BP decoding will have

fractional values. But often, we can prove that the non-fractional

values are correct.



Correctness conditions

xBP = (0,1, ?,0,1, ?)

• When fractional subgraph is a tree (Meltzer et al. 05)

• When beliefs on boundary of fractional subgraph are uniform

(Wainwright and Kolmogorov 05, Meltzer et al. 05)

• When MAP of fractional subgraph does not contradict BP

beliefs (Meltzer et al. 05, Weiss et al. 07)



NP hardness

In about 90% of benchmark problems, we can find global opti-

mum in about 10 minutes.



MAP decoding of n = 204 LDPC
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Does global optimum improve
performance ?

Using global optimizers:

• Stereo vision - unsatisfactory results.

• Side chain prediction - approx. 85 + ε%

Better energy functions are needed !



Conclusions

• Energy minimization in computer vision and computional bi-

ology. Typically NP hard.

• Standard LP solvers cannot handle LPs arising from our ap-

plications.

• BP decoding = LP decoding for large class of problems.

• Convex BP = simple LP solver.

• Globally optimal solutions can be obtained in minutes.


